Standard Test Method for Tension Testing of Wire Ropes and Strand

1. Scope

1.1 This test method covers the tension testing of wire ropes and strand at room temperature, specifically to determine the measured breaking force, yield strength, elongation, and modulus of elasticity. Methods described in this standard are not intended for other purposes.

1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.

1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in Note 1 and Note 2.

2. Referenced Documents

2.1 ASTM Standards:

- A 586 Specification for Zinc-Coated Parallel and Helical Steel Wire Structural Strand
- A 603 Specification for Zinc-Coated Steel Structural Wire Rope
- A 1023/A 1023M Specification for Stranded Carbon Steel Wire Ropes for General Purposes
- B 6 Specification for Zinc
- E 4 Practices for Force Verification of Testing Machines
- E 6 Terminology Relating to Methods of Mechanical Testing
- E 8 Test Methods for Tension Testing of Metallic Materials

2.2 ISO Standard

- ISO 17558 Specification for Steel Wire Ropes – Socketing Procedures – Molten Metal and Resin Socketing

3. Terminology

3.1 The terminology relating to tensile testing in Terminology E 6 applies to this test method. In addition, the following definitions for wire rope will apply:

3.2 Definitions:

3.2.1 abrasion—frictional surface wear on the wires of a wire rope.
3.2.2 aggregate area—see area, metallic.
3.2.3 aggregate strength—the strength derived by totaling the individual breaking strengths of the elements of the strand or rope. This strength does not give recognition to the reduction in strength resulting from the angularity of the elements in the rope, or other factors that may affect efficiency.
3.2.4 area, metallic—sum of the cross-sectional areas of all wires either in a wire rope or in a strand.
3.2.5 breaking force—the maximum load at which a tensile failure occurs in the sample of wire rope being tested.
3.2.5.1 Discussion—The term breaking force is synonymous with actual strength.
3.2.6 cable—a term loosely applied to wire rope, wire strand, and electrical conductors.
3.2.7 center—the axial member of a strand about which the wires are laid.
3.2.8 classification—group or family designation based on wire rope constructions with common strengths and weights listed under the broad designation.
3.2.9 construction—geometric design description of the wire rope’s cross section. This includes the number of strands, the number of wires per strand, and the pattern of wire arrangement in each strand.
3.2.10 core—the axial member of a wire rope about which the strands are laid.

2 For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM Standards volume information, refer to the standard’s Document Summary page on the ASTM website.

*A Summary of Changes section appears at the end of this standard.
3.2.11 fiber core—cord or rope of vegetable or synthetic fiber used as the core of a rope.

3.2.12 grade—wire rope or strand classification by strength or type of material, that is, Class 3, Type 302 stainless, phosphor bronze, etc. It does not apply to strength of the individual wires used to manufacture the rope or strand.

3.2.13 independent wire rope core (IWRC)—a wire rope used as the core of a larger wire rope.

3.2.14 inner wires—all wires of a strand except the outer or cover wires.

3.2.15 lay—(a) the manner in which the wires in a strand or the strands in a rope are helically laid, or (b) the distance measured parallel to the axis of the rope (or strand) in which a strand (or wire) makes one complete helical convolution about the core (or center). In this connection, lay is also referred to as lay length or pitch.

3.2.16 minimum breaking force—specified value that the breaking force must meet or exceed in a prescribed test.

3.2.17 modulus of elasticity—the slope of the elastic portion of the stress-strain curve. The ratio of stress to corresponding strain below the proportional limit. This value is generally taken between 20 and 50 % of the minimum breaking force.

3.2.18 socket—generic name for a type of wire rope fitting.

3.2.19 strand—a plurality of round or shaped wires helically laid about a center.

3.2.20 wire rope—strands helically laid around a core.

3.2.21 wire strand core (WSC)—a wire strand used as the core of a wire rope.

3.2.22 zinc-coated (galvanized) rope—wire rope made up of zinc coated (galvanized) wire.

3.2.23 zinc coated (galvanized) strand—strand made up of zinc-coated (galvanized) wire.

4. Significance and Use

4.1 Wire rope tests are generally to be performed on new rope. The use of wire rope in any application can reduce individual wire strengths due to abrasion and nicking that will result in the wire rope strength being reduced. Damage to the outer wires will also lower the maximum strength achieved during tension testing.

4.2 The modulus of elasticity of wire rope is not considered to be a standard requirement at this time. The determination of this material property requires specialized equipment and techniques.

4.3 Rope to be tested should be thoroughly examined to verify that no external wire damage is present. If present, it should be noted. When possible, a new undamaged sample should be obtained for testing.

4.4 End attachments and their installation can directly affect breaking force achieved during testing. Any attachment that can be used to directly achieve the required rope breaking force can be used. Standard testing with a poured socket, using zinc, white metal or thermoset resin, has been considered the most efficient. Proficiency in attachment of any fitting can have a direct effect on the final test results.

5. Interferences

5.1 Visual examination of the sample for any damage to outer wires should be done. If any damage is evident, the sample should not be used.

5.2 Measurement of the rope or strand sample is necessary to document the size, length between end attachments, and length of lay of the rope if necessary. Further details regarding this will be discussed in test results.

5.3 The length of test specimen shall not be less than 3 ft, (0.91 m) between sockets for wire ropes up to 1 in. (25.4 mm) diameter, inclusive, and not less than 5 ft (1.52 m) between sockets for wire ropes 1½ in. (28.6 mm) to 3 in. (77 mm) diameter. On wire ropes larger than 3 in. (77 mm), the clear length of the test specimen shall be at least 20 times the rope diameter.

6. Apparatus

6.1 Testing Machines—Machines used for tension testing shall conform to the requirements of Practices E 4. The loads used in determining tensile strength and yield strength shall be within loading range of the tensile machine as defined in Practices E 4.

6.2 Gripping Devices:

6.2.1 General—Various types of gripping devices may be used to transmit the measured load applied by the testing machine to test specimens. To ensure axial tensile stress within the gage length, the axis of the test specimen should coincide with the center line of the heads of the machine. Any departure from this requirement may introduce bending stresses that are not included in the usual stress computation.

6.2.2 Wedge Grips—Testing machines usually are equipped with wedge grips. These wedge grips generally furnish a satisfactory means of gripping long specimens of ductile metal. If, however, for any reason, one grip of a pair advances farther than the other as the grips tighten, an undesirable bending stress may be introduced. When liners are used behind the wedges, they must be of the same thickness and their faces must be flat and parallel. For best results, the wedges should be supported over their entire lengths by the heads of the testing machine. This requires that liners of several thicknesses be available to cover the range of specimen thickness. For proper gripping, it is desirable that the entire length of the serrated face of each wedge be in contact with the specimen. Specially-designed round-shaped grips may have to be used for testing rope or strand. It is essential that all wires in the rope or strand are uniformly gripped when the load is applied.

6.2.3 Conical Grips—Conical grips are constructed so that when they are fitted together, a conical-shaped cavity exists which will hold a cone socket wire rope or strand and attachment (fitting).

7. Sample End Terminations

7.1 Poured sockets or swaged sockets are typically used in tensile tests. Properly prepared, they are 100% efficient. Other types of end terminations may be used as long as the required minimum breaking force is achieved. Refer to ISO 17558 for socketing procedures.
8. Procedure

8.1 Take measurements on the sample to determine the actual rope diameter and sample length between sockets before loading on the test machine.

Note 1—Rope diameter should be measured properly to determine the actual diameter. (See Fig. 1 for the correct method.) An incorrect measurement is possible and should be avoided. (See Fig. 2 for the method to avoid.)

8.2 After the sample is placed in the test machine, complete the zeroing before testing begins for accurate results. Start applying the load to the sample. The maximum rate of loading should be 0.032 in. per minute (0.032 mm per min) for each in. (mm) of test gage length when the rate is under the operator control (a typical test gage length is 60 in. (1524 mm). Apply the load until a reduction from a maximum reading occurs. This reduction will normally be accompanied by a noise when wires and strand break. Wire and lubricant will be thrown from the sample if not contained.

Note 2—**Warning:** Safety in tensile testing of wire rope should be a major concern for the operator of the test machine, observers and the surroundings. Uncontained wires, during testing, can impact and penetrate objects at a great distance. Adequate safety shields directly around the sample, as well as around the operator and observers, should be used at a minimum.

8.2.1 The measured breaking force is reached when no further increase in applied force is possible. After the initial failure of some strands, the sample has reached its maximum strength. It is not necessary to continue the test until all strands in the sample have failed.

Note 3—Verification of meeting the required Minimum Breaking Force is achieved once the applied force to the test specimen meets or exceeds the required Minimum Breaking Force. It is not necessary to obtain the measured breaking force of the specimen to verify conformance.

8.2.2 The test may be discounted when the rope strand fracture occurs within a distance equivalent of 6 rope diameters or 10 strand diameters from the base of the grip or the termination and the intended minimum breaking force has not been reached.

8.3 If the sample being evaluated does not meet the minimum breaking force, additional samples may be tested. Retest instructions are detailed in Specifications A 586, A 603 and A 1023.

8.4 Final tensile test results are normally measured in pounds.

9. Precision and Bias

9.1 The primary intent of testing wire ropes and strand is to ensure that the wire rope or strand will meet the specified breaking force. Sometimes yield strength, elongation, or modulus of elasticity is required or desired. In the case of zinc coated structural strand and zinc coated structural rope tested to meet the requirements in Specifications A 586 and A 603, the procedures for determining percent elongation and modulus of elasticity and gage lengths are specified in Specifications A 586 and A 603.

9.1.1 When yield strength is needed, the methods defined in Test Methods E8 are recommended.

9.2 **Precision**—The precision of this test method has not been determined.

9.3 **Bias**—The bias of this test method includes quantitative estimates of the uncertainties of the dimensional measuring devices, the calibrations of testing equipment and the skill of the operators. At this time, the statements on bias should be limited to documented performance of particular laboratories.

10. Keywords

10.1 socket; thermo-set resin; wire rope
SUMMARY OF CHANGES

Committee A01 has identified the location of selected changes to this standard since the last issue (A 931 – 96 (2002)) that may impact the use of this standard. (Approved October 1, 2008.)

(1) Deleted Figure 1.
(2) Changed “acceptance strength” to “breaking force” throughout the standard.
(3) Added Specification A 1023 and ISO 17558 to Referenced Documents in Section 2.
(4) Revised Section 7—in doing so, deleted Notes 1, 2 and 3.
(5) Deleted Section 8. Renumbered subsequent sections.
(6) Changed “galvanized” to “zinc-coated” throughout the standard.
(7) Added Note 3.

ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, at the address shown below.

This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website (www.astm.org).